JOURNAL OF COMPUTATIONAL PHYSICS 121, 79-93 (1995)

Genuinely Multidimensional Upwinding for the
2D Shallow Water Equations*®

P. GARCIA-NAVARRO,T M. E. HUBBARD, AND A. PRIESTLEY

Department of Mathemarics, P.O. Box 220, University of Reading, Whiteknights, Reading, United Kingdom

Received May 3, 1994: revised Febmary 21, 1995

A multidimensional upwinding technique is applied to the simula-
tion of 2D shallow water flows. Itis adapted from fluctuation splitting
methods recently proposed for the solution of the Euler system of
equations an unstructured triangular grids. The basis of the numeri-
cal method is stated and the particular adaptation to the shallow
water system is described. Numerical results of interest to hydraulic
engineers are presented. Despite the complexities, advantages re-
lated to the use of a discretisation based on triangles would seem
to make the schemes competitive with those currently inuse. 1995
Academic Press, Inc.

1. INTRODUCTION

In reading the literature of recent years on the latest advances
in numerical methods for hyperbolic conservation laws, one
might gain the impression that many more people worked on
problems involving the Euler equations than on problems con-
cerning the shallow waier equations. In practice, though, this
is not the situation, with many more engineers, physicists and
mathematicians being involved in solving problems of the latter
kind on a day to day basis.

Classical methods and central difference schemes still domi-
nate the commercial software products for this market, with
Preissmann’s, Abbott’s (see [4], for example), and McCor-
mack’s [7] schemes the most commonly used. These schemes
are well known to require special treatment in many situations
so that the calculations may proceed.

Some years after their adoption for solving problems in gas
dynamics, upwind and TVD (total variation diminishing) nu-
merical schemes have been successfully used for the solution
of the shallow water equations, with similar advantages [8].
Their use is nevertheless only gradually gaining acceptance in
this sector.

Recently, in the context of gas dynamics, doubt has been
expressed as to whether the essentially 1D TVD schemes are
the most suitable choice for multidimensional calculations, and
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the search has been initiated for genuinely multi-dimensional
approaches. Most of these are based on piecewise constant
representations of the solution on triangular grids with a 1D
upwinding of the Riemann problem for each edge of the trian-
gle. However, it has been claimed that such an approach is
weak when the solution is not constant along a triangle edge,
since it may misinterpret features which are not aligned with
grid interfaces.

In a different philosophy, instead of concentrating on finite
volumes and the changes of the variables across the cell sides,
Deconinck et al. [5] consider solutions on triangular grids in
which the unknowns are associated with the vertices and up-
dates to these nodal values are through the advection of linear
wave solutions. This avoids the problems of taking the normal
to the cell interfaces as a privileged direction.

Reference [5] is concerned with gas dynamics applications.
in this paper we consider the use of this technique for 2D
shallow water flows and the question of whether they may be
of practical use. In the next sections, the basis of the numerical
method is stated and the adaptation to the shallow water system
is described. The numerical treatment of the boundaries as well
as the inclusion of source terms in the governing equations are
also discussed. Finally, some numerical results are presented.
Although this work is at an early stage, our results indicate
that the advantages may outweigh the disadvantages and that
these schemes may have a future for hydraulic engineering ap-
plications.

2. BASIC TECHNIQUE

2.1. Scalar Case

For the numerical solution of the 2D linear scalar equation

a’—W-l-a~V'w=0,

Y a = (a, a,),

2.1

with constant a, we assume the given physical domain to be
discretised by triangular cells and a set of initial values w; stored
at the nodes of the mesh. For each cell T, of area Sy, a cell
fluctuation is defined as
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2.2)
and a cell residual Ry as

1 1
Rr=——0p=—
T S, T S, )7

a- VwdS = —Sl 35 wa - ndC, (2.3)
T
where C represents the cell boundary and n is the inward unit
normal to the cell boundary. The cell fluctuation or cell residual
contains information on the state of the cell to be transmitted
to w over a time step, so that the changes made to the values
of the w;’s at the nodes of triangle T will be proportional to Py
or Ry. The distribution of the information to the nodes should,
if possible, be done in a way which ensures conservation [15].
From the properties of the normals in the cell and the addi-
tional assumption that the solution varies linearly within each
element, it is possible to identify a discrete approximation of
Vw, where n, is the normal to the edge opposite node i,

l 3

Viy = 25,2 Wi, (2.4)
such that
Rr=a-Vwy, (2.5)
or
3
b= = wik, (2.6)

i=1
with the introduction of the quantities

ki=gza-n 2.7

Bl

which contain information about the direction of advection
relative to the cell. They can be used to decide whether flow
enters or leaves the triangle through a particular edge and,
in that sense, are a useful tool for the upwind properties of
the technigue.

Residuals and fluctuations are cell-based quantities which
are going to be used for the updating of the nodal values, For
this purpose we introduce distribution coefficients, DY, defining
the weightings of the residual to the nodes in a cell. For conser-
vation and consistency they must satisfy

Di=1

i=1

in every cell; see [5], for example. Then, a first-order explicit
time-stepping procedure at the nodes can be defined as

it =y = & [2 STD;Rf;], 2.8)
LT

where the sum is over all the cells meeting at node i, and where
S = éETi S7. In order to focus on the individual cell treatment,
the advection scheme can be expressed, on each triangle, as

S1W’]I+l = Sﬂ‘VT - AtSTD;er"T
SzWEJrl = SZWE - AISTD%'R"T
Sng-*—l = S3W§ - AfSTD%"R"T,

where only the influence from the individual triangle has
been included.

There exist many criteria for the design of advection schemes,
depending on the choice of the distribution coefficients. Two
properties are of interest, positivity and linearity preservation
of the scheme. The former is related to the 1D property of
monotonicity whilst the second has to do with the accuracy of
the method. Unfortunately, their simultaneous requirement is
incompatible with the linearity of a scheme. This leads to the
generation of non-linear advection schemes, even for linear
equations. These schemes are based on the construction of
advection speed vectors a,, in the direction of the local gradient,
defined as

with

m = AL 4,=a-m
Vwlm '

This makes the coefficients &, of (2.7) dependent on the solution,

enabling the simultaneous satisfaction of the two desired prop-

erties. Note that the use of the frontal speed a, does not alter

the cell residual, since

a-Vw=a, Vw

If the equation to be solved is non-linear, a suitable lineariza-
tion must be performed before the techniques described for the
linear equation are applied.
Given the non-linear equation

M T Fw) =0,

o F=(FG),

where
a = (F,, G,),

the fluctuation is defined as
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@, = ALV-FdS.

An averaged advection speed which satisfies discrete conserva-
tion can now be found by assuming linear variation of w over
the cell and therefore constant gradient Vw. In that case

[,V -Fas = | 5+ Gas = [, Fow + Gowas

= w, L_ F.ds+w, L G.d5 = (aw, + a,w)S;

where
7=~ j FudS, 3=~ j G, dS.
Splr Srlr
and
b= -~§a-Vw, k=4%a-n,
with

Since the advection schemes used for the shallow water equa-
tions are no different from those used for the Euler equations
we will not go into further detail about their particular construc-
tion and description. We refer the reader to the very good
reviews in [10, 15]

2.2. Systems of Equations

The application of multidimensional upwinding to a general
non-linear 2D system of conservation laws

‘Z_":+ V-(Fw))=0, F=(,g),

requires a discrete form, for the conserved variables w, of
the linearization

g‘—v» + (A, B)V(w) =

Where, in particular, a consistent approximation for the cell
residual is sought,

Rr = (4, By - Ve, (2.9)
where Ar, By are discrete equivalents of the cell-averaged Jacob-

ian matrices, calculated using the nodal values. The assumption
of linear variation of w on each cell, enables us to write

1
RT=‘ A,B 'V dS
S J @3- Tw (2.10)

- -—wa j (4, B)dS,

where discrete cell gradients and cell Jacobians can be defined
in the same form as for the scalar case,

3
VwrﬁlZwin,
T i=1
Z:l AdS
Spir
§=l BdS

Splr

Unfortunately, the exact evaluation of the above integrals is
not practical either for the Euler or for the shallow water equa-
tions. Roe [13] suggested the introduction of a parameter set
of variables for a simpler treatment of the former system. The
strategy we have followed for the shallow water equations
makes use of the set of primitive variables and is described in
the next section.

3. THE 2D SHALLOW WATER SYSTEM

We begin this section by writing the non-homogeneous ver-
sion of the system of equations in terms of the conserved vari-
ables,

= (h, uh, vR)", 3.h

where h, u, and v are the depth and x and y velocities respec-
tively, that is,

U dF
— =G, 32
ar ax ay (3.2)
where the fluxes are
uh vh
2 i
E=1|uh+ g . F= uvh
2 ghz
vih + 2
uvh 2

The variable g is the acceleration of the gravity. The equivalent
of the speed of sound in gas-dynamics, the velocity of small
perturbations in still water, is the celerity ¢ given by ¢ =
\/g_h, involved in the definition of the governing dimensionless
Froude number Fr = Vi + v¥/c.

The right-hand side of the system contains the sources and
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sinks of momenturn arising from the bed slopes and the friction
losses along the two coordinate directions,

G = (0, gh(Ss, — Sp), gh(Sy, — S

The bed slopes are the spatial partial derivatives of the bottom
elevation z,

9z 0z
SOx = _ 5;; W T T
and the friction slopes are defined in terms of the Manning’s
roughness coefficient #,

_ AtV -+ g Vil + ol
T P e [z :

The system can be rewritten in terms of the same variables
but in a non-conservative form as

U, 4. gy

i3

ot dx dy 33
in which only the homogeneous part has been considered. The
two Jacobian matrices are

0 1 0
JE 2
A="—==|—~w+gh 2u 0
U d :
—uv voou
0 0 1
aF
= = —HU v 13
B al
-v*+gh 0 2v

As mentioned earlier, it will be useful later on in the paper to
express the equations in terms of the primitive variables

V = (h,u vy 3.4

in a non-conservative way, as

WGV Y g

3.5
ot ax ay (3.5

where the new matrices G and H are

u h 0O v 0 h
G=|g u 0], H={(0 v O]
0 0 u g 0 v

it is worth noting that the transformation mairix, M, has the form

1 00
M= % =ju h 0]
v 0 h
In the conservative formulation, the fluctuation is defined as
;= [ Uds = - [ (E+F)ds (3.6)

We can use the relation between the two sets of variables to
define new matrices R and S,

_dE _dE3U
AV auav AM
aF 4F aU

S‘W*ﬁg\?‘-BM

so that
E, + F, = EV, + F,V, = RV, + SV,

Provided that the variables V are linear over the cells 7, the
gradients, V, and V,, are constant, and this wouid enable us to
write the fluctnation as

@, = — ( [ ROV, + S(V)V,)as

ﬁ( [, ®evyasyv, - (L (SVISV, (BT
~S;[RV, +5V]

with the definitions:

— 1 <. 1 :
R-1 J (RS, 5= 2 f _S(V)dS. (3.8)

The matrices R and § contain linear and quadratic terms in
V, which complicates integration. As mentioned in Section 2.2
it is possible to choose another variable Z = (Vh, uVh,
vV'h) to vary linearly over the cells according to the usual
procedure for the Euler equations. Unfortunately, based on
these unknowns, the corresponding matrices R and S are cubic
in V', so the argument used for the Euler equations cannot be
used for the shallow water equations.

Here, we approximate R, § by

R=R(V), §=SV), (3.9

where the averaged variables are simply
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I B+ by + by
v=lu =% w o (3.10)
v U1+Ug+U3

surmnming over the nodal values at the vertices of the triangle

T. Note that with this definition of R, § we are only approximat-

ing Eq. (3.8), unlike in the Euler equations where an exact

- representation of the integral is obtained. As a consequence, we

lose conservation in the numerical evaluation of the fluctoation.
Now we have

(0, =) — S,(E, + F,) = —=8,(AU, + BU). (3.11)
From (3.7) it is easy to identify
E, = RV,
o (3.12)
F,=5V,.

¥

Moreover, we can use the change of variables to define
$:0,= [ U.d5 = [ MOVIV.dS = $:MT)V,

so that

U, = M(V)V,
V. = MWV,

(3.13)
(3.i4)
with similar expressions for U, and V,. This can be used to
rewrite the fluctuation in terms of suitable averages of the

conserved variables,

(@7 =) —[RM'(V)U, + SM (VU IS,

_ (3.15)
= —[AU, + BU]}5;,
which allows the identification of A and B.
— = — JE| av JE —
= -1 = —] — = — =
A= RVIMEW =551 au|, = ao], =AY
(3.16)

— — — aF| gV aF —
B=S(VWM ' Vy=—| —| =—| = B(V).

WM =59 | 0, 7 au), ~ BV

The next thing we have to do is to compute the residuals Ry
or the fluctuations and distribute them to the vertices of every
cell by means of an advection scheme. Recalling that at the
beginning of the time step we have the values of the conserved
variables at the vertices of the triangular mesh, the steps to
follow are: to compute the primitive variables V from the known
U, work out the gradients VV = (V,, V,) within each triangle,

and decompose the residual into parts that can be explained as
due to the passage of a wave. The latter step will require a
description of wave models.

4. WAVE MODELS

Consider the linearized system of equations written in primi-
tive variables

@.1)

A simple wave solution can be found, as in Roe [11,12], in
the form

V = V(&) with § = x.np — A,

where ny = (cos 6, sin 6) gives the direction of propagation
and A, the speed of the wave, If we note that

vV __, av

ar &
and

VvV = ﬂl‘lg,

£

it follows from (4.1) that

dV — - dV
—A— + + Hsin ) —=
/\gdf {(Gcos @ sm@)d‘f 0

which means that dV/d£ are the right eigenvectors of the matrix

M* =G cos 6+ Hsin 6 4.2)
and A, are the corresponding eigenvalues.
1t is then possible to express the gradient as the sum
VV = a'rinf, 4.3)
k=1

that is,
L
V.= > atrfcos 8
k=1

n
V, = > afrsin 0%
=1

The vectors r* are the right eigenvectors of the mairix M*:
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1 1
0
gcos o] —=cps B .
r'=1¢ , ri= , r=|—smé| 44
gsin e ygsin (7} cos 8.

The variables o represent weighting coefficients of the sum
and #* are the different angles of each wave.

The connection expressed in {3.13) between the gradient of
the primitive variables and that of the averaged conservative
variables can be used to develop the latter as

n
E a’rtcos 6%
_ n
= E ert sin 9%,
k=1
where, now, ¥¥ represent the right eigenvectors of the matrix

M#=Acos 6+ Bsin 8

and can be worked out through ré = M(V)r*. It is worth noting
here that the two matrices M* and M ¥ share the unique set of
eigenvalues, A",

A =lHcosf+Usinf+c
AM=tucosB+vsinf—c

{4.5)

M=lcos@+70siné

The residual then can be split into a sum of waves

Rr=AU,+ BU,

H

2 atrt cosB’UrBZar"smB*

k=1 k=1

= i oA cos 8 + B sin #]rt (4.6)
k=1

= 2 ot At
k=1
We next describe two of the several wave models proposed in

the literature to accomplish the above decomposition.

4.1, Roe’s Wave Models

The wave decomposition of the gradient of the primitive
variables, namely,

VvV = i afrinf,

k=1

@7

represents a system of six equations in the shallow water case,
where we have two spatial derivatives for each of the three
variables, Therefore, it allows for six unknowns. These must
correspond to either the coefficients or the angles of a propaga-
tion of suitable choices of waves whose advection will represent
the total fluctuation.

Following Roe’s suggestions for the treatment of the Euler
equations [11], the splitting can be made into four erthogonal
acoustic waves, labelled by their strengths (coefficients) and
cne angle # which determines the four directions, defined by

(ale 9)! (aZa 6+ TT), (QB’ 8+ g’), ( 4 6+ 32”)

as well as one shear wave (3, ¢) of strength 83 at an angle ¢.
The six unknowns are then «, s, a3, ay, 8, and 8. The valve
of the angle &, in Roe’s model D, can be defined in terms of
the solution as

g T
d=0 1 sign(f3).

Making use of the equivalences of the basic trigonometric
functions to those of the first quadrant of the unit radius circle,
the system (4.7) can be explicitly written as

oh . .
— =, o8 —apycos @ — osin @+ aysin @
X

h . .
=g sin @ — a,sin 8+ aacos B — v, cos O
y

=
du g a 5 . 5 . 4
g—k—[alcos‘ﬂ-%azcos 6+ a;sin’ 6 + q sin’ 0]
r ¢
— Bsin $cos ¢
du
—_—_ == 4 -
P C[a, sin B cos 0 + o, sin Bcos 0 — o sin Beos 6 @.8)

— o sin B cos 9] —

Bsin’ ¢

g . ) .

pw = = [, 5in #cos B + ey sin #cos @ — gy sin Beos
4

— o, sin Bcos B] + Bcos® ¢

dv
5; =< [a, sin® # + a, sin® @ + a; cos? 8 + ay cos® #]
c

-+ Bsin ¢ cos ¢.

The solution of the above algebraic system is easily found
giving, for the coefficient of the shear wave,
= |B] sign(B) = v, — u,. 4.9)

The identities
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B(cos® ¢ — sin® ¢) = |B| sin 28
23 sin ¢ cos ¢ = —|B| cos 26

are helpful in combining the derivatives as
u,t v, = [%(a. ooy — o —a)+ (B[:I sin 28

= v, = [g (o + @ — oy — ) + |B|] cos 28

so that

u, v
tan 20 = = <
u, — U,

(4.10)
Further manipulations of the derivatives lead us to
u, cos? 8 — v, sin? § = [5 (o, + oy + % iﬁi] cos 20
c

and
hocos 8+ hysin 8 = oy — o,

hence, to the values

1 2 — a2
W = [hrcos G+ A, sin @+ g (u" cos cis 21:; S’ 6 _ % (B()]

4.11)

¥y =

[—(hx cos § + b, sin 6)

cfucosf@—uv,sin*d 1
+ _ - . . .
g ( cos 20 2 [B')] “.12)

b=

A similar procedure gives

1 _ ¢ {v,cos’ @ — u.sin* @ ]
= = hycos 0 - hysin g+ < (2 ; 2
o z[l)cosﬁ . Sin 9§ g( 020 +2{B|):|

(4.13)

oy = L [—(h3 cos 8 — h,sin 8)

[\

4+ < (U‘. cos’ B — u, sin* @

1
- — +5 IBI)]- (4.14)

In order to distribute the residuals associated with the individ-
ual waves in this case, we used the advection speeds suggested

by Roe in [11], u = en, for the acoustic waves and u for the
shear wave,

4.2. Rudgyard’s Wave Models

These are mainly based on the idea of obtaining the six waves
by choosing two, in principle, arbitrary propagation angles, 0,
and 6, and performing a decomposition of the gradient,

3 3
— Bk bk
VWV = E oy KNy + 2 (2471 w33 LT
k=] Py

(4.15)

which contains six free paramelers, the six a coefficients. The
vectors ny = (cos #, sin §) are again the unit vectors in the
directions @, and r} are the right eigenvectors of the matrix M *
for each value of 8. In order to solve for the unknowns, use is
also made of the left eigenvectors of that matrix

1 1
0
¢ 4 .
L= Egcosﬁ , B= figcosﬁ , b= —sin#g
. cos &
2—gsin6 ——sin @

(4.16)
and of the unit vector normal to ny,
8y = (—sin 8, cos 0).

Multiplication of (4.16) on the left by 1}, and the left projection
OVEr Sgp gives

Sp - (L VV) = apy(Se * My). 4.17)

where the property 13- 14, = §; and the orthogonality between
vectors § aid i have been used.
From (4.17), we obtain

1 —
g =

_So (s~ VV)

sin(6, — 6,) (4.18)

In case the above notation may be rather obscure, the vector
products contained can be developed as

1

. S
EN T T Sin(e, — 6)

h + Ecos Ou, + gsin f.v,
1
(—sin 6,, cos 6} 3

 + £ cos &, + < sin i,
g g

In that way, the six unknowns of the problem are given by
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_ S X - VV)
sin{6, — 6,) ’

P Sp - (l'éq * VV)
S ALY
%= Gng, gy - Y

ko
g =

Ags an iilustration, in the particular case of choosing as propaga-
tion angles, 8, = 0, 6, = 7w/2,

Following [14], the residuals of the waves from this model
were advected with the speeds

_ A S
sin(f, — 6))°

&
P ApiSa L

My = — ,
o sin(6, — 8) "

4.3. Mach-Angle Splitting

One of the options proposed within Rudgyard’s wave models
[14] is the particular choice of the angles that satisfy the
equation

u-n—c¢=0, {4.20)
that is, those angles that make the velocity of one of the acoustic

waves vanish. They are obtained from algebraic manipulation
of (4.20) and can be expressed as

6, = arc tan (ziu___ WM“”)
u—vV(HM 1) 4.21)
61 = ar¢ tan (M)
wt o VM=)

with M? = (i} + v’)/c? representing the Froude number in this
case. This technique gives very good results in gasdynamics
problems for supersonic flows but is not directly applicable to
the subsonic case. It can nevertheless be acle:pted for subsonic
(subcritical in our case) flows by replacing M? — 1 with
max(|M? — 1|, &), the tolerance & taking a typical value of 0.1.

* 4 T i I /|
N AN ) : ]
1 ™~ ]
1 1.
25 145566 I <H\
141003
1.36453 )
131896 it !
20 1.2734 N I
— 122783 > N i
E ] 118207 I
> 11367
] 15 2 105114
= ¥ §
& 1.04557
B i I
a 1 i
10 0 3
!
i 1
I~ I i
5 1 : ()
i
ZNIANA :
0 IZNEAN) ] . : ! ] |
V] 5 10 15 20 25 30 35 40

Distance x(m)

FIG. 1. Map of level lines from the nemerical result obtained in the 2400
elements grid. The continuous line leaving the domain by the downstream side
represents the exact position of the steady shock.

5. NUMERICAL RESULTS

The treatment of the solution at the points on the boundaries
of the domain has been kept as close as possible to the theory
of characteristics in 2D. In all cases, the number of physical
conditions to be imposed has been determined by this theory.
This number is defined [6] by the signs of the eigenvalues A
of the matrix

K = An, + Bn,, (5.1
where the boundary normal vector n is the unit vector pointing
into the domain. The eigenvalues are associated with the celeri-
ties of the waves. Hence, when A is positive, the information
traveis along the normal, into the domain. When it is negative,

oG (RS
- -
o
—

<
—

-15. |- R | L j |
2.5000E3 5.0000E3 7.5000E3 1.0000E4

WNumber of iteralions

FIG. 2. Convergence to the sieady state. Plot of the logarithm of the reot
mean square of the nodal residuals of the conservation of mass equation versus
number of iterations performed.
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§ ) e
o L
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FIG. 3. Map of level lines from the numerical result obtained with a finite
volumes TYD scheme in a (42 X 7) quadrilateral cell,

the information goes against the normal, that is out of the
domain. The subcritical cases are the mosi illustrative, having,
at a subcritical inlet for instance, u - n > Qand u - n < ¢, so that,

)\1=u‘n<0
A=u-n+tc>0

A3=u'n—c<0.

This means that there are two waves from outside and therefore,
two boundary conditions have to be imposed. The wave frem
inside produces a numerical boundary condition. In an analo-
gous manner, the case of a subcritical outlet requires cnly
one imposed external boundary condition. The information that
travels from inside the domain is determined by the compatibil-
ity relations which can be written for arbitrary propagation

39 /

25

20

Distance y(m}
= P

IPIIJ_I_LIJ'LLII|!|JJ_I_IIAI_]

0 5 10 15 20 25 30 35 40
Distance x(m)

FIG. 4. 96 elements initiaj grid used for the oblique jump test case.

30

Bistance y(m)
— n ny
o & a

[ASET AR |
20 25 30 35 40
Distance x{m}

0 5 10

FIG. 5. Above: 96 elements distorted grid used for the oblique jump
test case.

directions from the 2D theory of characteristics. These have
been simplified by assuming that the derivatives along the
direction tangential to the boundary are negligible. In the case
of a material wall boundary, a zero normal velocity is imposed
and the depth as well as tangential velocity are calculated from
the compatibility conditions.

For the interior points we used the non-linear PSI advection
algorithm [10] for all the test cases following but obtained very
similar results with the other advection schemes. As for the
wave model, the calculations correspond to Rudgyard’s decom-
posifion having been found more robust, in general, than the
one corresponding to Roe’s model D.

5.1. Oblique Hvdraulic Jump

With numerical schemes it is highly desirable to be able to
check their predictions against suitable test problems, prefer-
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FIG. 6. Map of level lines from the numerical result ebtained in the 96
elements distorted grid.
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FIG. 7. Unsteady flow through a converging diverging channel. Grid, geometry and points of measurement.

ably ones for which an exact solution is availabie. Such is the
case for the example below, computed by a finite volume
method by Alcrudo and Garcia-Navarro [1], in which an oblique
hydraulic jump is induced by means of the interaction between
a supercritical flow and a wall at an angle 8. The equation for
the angle formed by the shock wave is defined by

sinf3 = Y:]? Vil 2h)(hothy + 1), (5.2)

A 2400-element triangular mesh, shown in Fig. 1, was vused to
reproduce the discontinuous flow in a case where 6 = 8.95°
The initial conditions were h = 1 m, u = 857 mfsand v =
0 m/s, that is, a uniform supercritical flow with Fr = 2.74.
Supercritical flow boundary conditions were applied both up-
stream and downstream. This means that all the variables were

03

Water level h{m)
(=)
n

0.1
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8 12 16 20 24 28 3 ¥ W

Time t(s)

FIG. 8. Test case S, = 0.0, i, = 0.3 m, &, = 0053 m. Continuous
line: Predicted values. Circles: Measured values. Section 1. Multidimensional
upwinding scheme.

specified in the former and all of them updated from interior
points in the latter.

The exact solution corresponding to the upstream flow and
geometry imposed was calculated. The predicted values were
= 1.5 m, ju] = 7.9556, Fr, = 2.075 for the downstream
variables, and £ = 30° for the angie of the jump connecting
them to the given upstream conditions. As can be seen in Fig.
1 as well, the agreement of the numerical results with the correct
solution, represented by a continuous line leaving the domain,
was good. The angle formed by the weli-defined oblique hy-
draulic jump is closely reproduced as well as the values of the
flow variables on both sides of it (, = 1.5049 m, u2| = 79419,
Fr, = 2.068) and a discontinuous water surface devoid of oscil-
lations is obtained.

For the convergence to the steady state, a local time stepping
was used with a CFL = 0.9 and Rudgyard’s Mach-angle split-
ting method was found to give the best convergence rate shown

Water level h(m)
j=)
&
1t
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DO_ T T T | T ] T 1 L T T ] T F ] T T T T T 1 T ]_|
D 4 8 12 B 20 24 28 32 36 40 44 48
Time 1(s)

FIG. 9. Test case S, = 0.0, iy = 0.3 m, k, = 0.053 m. Continuons
line: Predicted values. Circles: Measured values. Section 2. Multidimensicnal
upwinding scheme.
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FIG. 10. Test case 53 = 0.0, by = 0.3 m, h, = 0.053 m. Continucus
ling; Predicted values. Circles: Measured valves. Section 3. Multidimensional
upwinding scheme.

by Fig. 2. The same degree of accuracy is achieved with both
fluctuation splitting and the TVD in finite volume method re-
ported in [1], but at a higher computational cost in the case of
the former technique (a factor of about 5). The results obtained
with the TVD method in a quadrilateral grid can be seen in
Fig. 3. A strategy of cell movement proposed by Baines [5]
can be nevertheless exploited for the unstructured grid in order
to overcome this difficulty. The possibility of using an algorithm
capable of making the cells migrate towards the regions of
steeper gradients allows the reduction of the total number of
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FIG. 11. Test case S, = 0.0, iy = 0.3 m, h, = 0.053 m. Continuous

line: Predicted values. Circles: Measured values. Section 4. Multidimensional
upwinding scheme.
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FIG. 12, Test case S = 0.0, iy = 0.3 m, by = 0.053 m. Continuous line:
Predicted values. Circles: Measured values. Section 1. TVYD scheme.

cells. A preliminary, but encouraging, result is displayed in
Figs. 4-6. Figure 4 shows the 96 element grid that has been
automatically rearranged according to the evolution towards
the steady state of the flow, Fig. 5. The accuracy of the result
displayed in Fig. 6 is superior and the computational time has
been reduced to half of that used by the TVD method.

5.2. Unsteady Flow in a Converging-Diverging
Sloping Channel

In order to test the performance of the multidimensional
upwinding when including source terms in the system of equa-
tions, a simulation of a dambreak wave in a 2D laboratory
experiment, as reported in [3], is presented. At the same time,
and unlike in the case of the Euler equations, most practical
problems involving the shallow water equations are time-depen-
dent, so this problem also tests the temporal accuracy of the
method. The treatment of the source terms was done simply
by calculation of the functions at the vertices of every cell,
including these values in the updating at every time level,
that is, in a pointwise manner. A better approach could be an
integration of the source terms over the triangle and further
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FIG. 13. Test case S;, = 0.0, &y = 0.3 m, &, = 0.053 m, Continuous ling:
Predicted values. Circles: Measured values. Section 2. TVD scheme.
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Predicted vaiues. Circles: Measured values. Section 3. TVD scheme.

distribution to the nodes. Certainly, this would improve conser-
vation as long as the integration is done exactly, which can
become expensive becanse the source ferms are non-linear in
h, u and v. Treating the source terms pointwise is a sensible
thing to try first due to its simplicity.

The channel is 21 m long and 1.4 m wide at it widest part.
It has a uniform bottom slope S, along the direction of the
main flow. The roughness of the surface (smooth steel-glass)
is represented by a uniform Manning’s coefficient n = 0.012.
Measured data of the water levels as a function of time were
available at several positions along the centreline of the flume
and they were located over nodal points of the computational
grid chosen. The validation of the method was done on a 672-
element triangular grid. The measurement points used to vali-
date the numerical results, as well as the geometry of the channel
are shown over the grid in Fig. 7. The uncertainty of the mea-
surements is not available in [3] but the supplied data contain
water level variations in time with a precision of one-tenth of
a millimeter, which makes sensible the estimation of an error
band of 1 mm or less.

A dam is placed in the constriction, at x = 8.5 m from the
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FIG. 15. Test case S, = 0.0, ;) = 0.3 m, k; = 0.053 m. Continuous line:
Predicted values. Circles: Measured values. Section 4. TVD scheme.
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FIG. 16. Test case S, = 0.01, iy = 0.3 m, h, = 0.0 m. Continuous
fine: Predicted values. Circles: Measured values. Section 1. Multidimensional
upwinding scheme.

origin, where the width is 0.6 m. The discontinuous initial
conditions consist of a horizontal surface level on the upstream
side, with a depth of 0.3 m just behind the dam, and a nniform
water depth downstream. All velocities are initially set equal
to zero. Some authors impose Ritter’s initial conditions at the
damsite. This is an acceptable strategy for certain numerical
schemes not able to deal with strong discontinuities at ¢ = 0.
The lateral and upstream boundaries are treated as closed walls.
The downstream side was treated as a supercritical boundary
in the sense of not applying any particular external boundary
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FIG. 17. Test case S, = 0.0, & = 0.3 m, b, = 0,0 m. Continuous
line: Predicted values. Circles: Measured values. Section 2. Multidimensional
upwinding scheme.
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condition but calculating the values of the variables from the
normal updating at the vertices,

The case of dambreak flood wave propagation over an initial
water depth 4, = 0.053 m and zero bottom slope is displayed
in Figs. 8-11. The results from the calculation are plotted as
a solid line and the circles represent the measured data. The
solid lines follow closely the experimental results. Apart from
downstream boundary effects, the wave front celerity and inten-
sity are well reproduced by the model, as indicated by the rising
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FIG. 19, Test case S;, = 0.01, &, = 0.3 m, 4, = 0.0 m. Continuous

line: Predicted values. Circles: Measured values, Section 4. Multidimensional
upwinding scheme.
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FIG. 20. Test case S, = 0.01, b, = 0.3 m, &, = 0.0 m. Continuous line:
Predicted values. Circles: Measured values. Section 1, TVD scheme.

parts of the curve in Figs. 10, 11. A weir was placed downstream
in the experimental setup in order to keep constant the initial
downstream water level. The interaction of this weir with the
flood wave originated a reflected front which can be seen as
an abrupt increase in water level in Figs, 9-11. The good
agreement between calculation and experimental data deterio-
rates when the moving reflected wave is met, rendering the
plots meaningless from that moment. The use of a boundary
condition different from the weir equation is responsible for
this circumstance which is independent of the scheme used in
the interior and it also happens with other numerical solutions,
as reported in [9] and shown in Figs. 12~135.

Dry bed initial conditions downstream of the dam corre-
sponding to a bottom slope S, = 0.01 were also tried. Zero
initial depth was simulated by a value of 10°® m. The set of
results is plotted in Figs. 16-19. The overall quality of the
results is as good as those obtained with a high order finite
volume method [3, 9] as Figs. 20-23 show.

The calculation of the results presented was performed
with a global time-stepping in order to be able to compare
with the experimental data available. The CFL used was 0.8,
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FIG. 21. Test case Sp = 0.01, &y = 0.3 m, A, = 0.0 m. Continuouns line:

Predicted values. Circles: Measured values. Section 2. TVD scheme.
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FIG. 22. Test case S, = 0.01, 4 = 0.3 m, ki, = 0.0 m. Continuous line:
Predicted values. Circles: Measured values. Section 3. TVD scheme.

Smaller values of the time step were tried with no significant
improvement in the outcome. On the other hand, resolution
in a finer grid (twice the number of cells in each direction)
rendered the results more accurate. However, the cost of the
computation with the finer grid made doubtful the interest
that the extra accuracy obtained. The Euler integration in
time used is not the best choice, but many successful schemes
use it., Other more accurate time-stepping schemes are avail-
able [16] and their use could improve the overall scheme,
provided that a reasonable relation between accuracy and
efficiency is met.

The results obtained from the finite velume TVD scheme
for the same problem are shown as a means to establish the
numerical merits of the new scheme by comparison. In general,
the numerical results from both methods are similar, which
indicates that the errors are not due to the numerical scheme
but, perhaps, to a too simple modelization of a very compli-
cated problem.

6. CONCLUSIONS

Two-dimensional wave decomposition and multidimensional
upwinding seem a promising method of solution for the 2D
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FIG. 23, Test case Sy, = 0.01, 2, = 0.3 m, b, = 0.0 m. Continuous line:
Predicted values. Circles: Measured values. Section 4. TVD scheme.

shallow water equations. Two wave models have been adapted
to render the technique swvited to hydranlic problems with
shocks. As with the 1D TVD schemes, our experience with
using the multidimensional upwind approach for the shallow
water equations has closely followed that of the researchers
solving the Euler equations (with both the advection schemes
and wave models) showing the same properties as for that
system of equations,

Although the procedure is more complicated and costly
than present day generalizations of 1D upwinding techniques
it is based on a triangular discretization and, by taking
advantage of the triangles, the disadvantages can be overcome,
making the schemes very competitive. The future for them
then looks much more promising. They can clearly be applied
to arbitrary geometries, a great advantage for hydraulic
engineers working on practical problems, and there is a wide
variety of possibilities concerning grid movement and
adaption,

Future work is envisaged to find better ways to deal with
the source terms present in the shallow water equations when
applied to realistic problems, as well as more efficient schemes
to treat the time integration in unsteady cases.
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